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Abstract: 
In this paper, we derive the solution of New generalized fractional kinetic equation involving the New generalized 

Miller-Ross function. The result obtained here is quite general in nature and capable of yielding a very large number 

of results. Special cases, involving the M-Series, Mittag-Leffler function and Miller-Ross function etc. are also 

considered.  
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1. Introduction: 
The great importance of mathematical physics in distinguished astrophysical problems has attracted astronomers, 

mathematician and physicists to pay more attention to available mathematical tools that can be widely used in 

solving several problems of physics, applied physics and astrophysics. A spherically symmetric non-rotating, self-

gravitating model of star like the Sun is assumed to be in thermal equilibrium and hydrostatic equilibrium. The star 

is characterized by its mass, luminosity, effective surface temperature, radius, central density and central 

temperature. The stellar structures and their mathematical models are investigated on the basis of above characters 

and some additional information related to the equation of state, nuclear energy generation rate and the opacity. The 

assumptions of thermal equilibrium and hydrostatic equilibrium imply that there is no time dependence in the 

equations describing the internal structure of the star (Kourganoff [11], Perdang [17] and Clayton [2]). Energy in 

such stellar structures is being produced by the process of chemical reactions (thermonuclear reactions). 

 

Consider an arbitrary reaction characterized by a time dependent quantity 𝑁 =  𝑁(𝑡). It is possible to calculate rate 

of change dN/dt to a balance between the destruction rate d and the production rate p of N, that is 
𝑑𝑁

𝑑𝑡
=  −𝑑 + 𝑝.In 

general, through feedback or other interaction mechanism, destruction and production depend on the quantity N 

itself: 𝑑 =  𝑑(𝑁) 𝑜𝑟 𝑝 =  𝑝(𝑁).  This dependence is complicated since the destruction or production at time t 

depends not only on N(t) but also on the past history N(τ ), τ < t, of the variable N. 

 

This may be formally represented by (Haubold and Mathai [7]) 

 

𝑑𝑁 /𝑑𝑡 =  −𝑑 (𝑁𝑡 )  +  𝑝(𝑁𝑡),                                                                                                                                (1) 

where 𝑁𝑡 denotes the function defined by 𝑁𝑡(𝑡 ∗)  =  𝑁(𝑡 − 𝑡 ∗), 𝑡 ∗ >  0. 
 

Haubold and Mathai [7] studied a special case of this equation, when spatial fluctuations or inhomogenities in 

quantity N(t) are neglected, is given by the equation 
𝑑𝑁𝑖

𝑑𝑡
= −𝑐𝑖𝑁𝑖(𝑡)                                                                             (2) 
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with the initial condition that 𝑁𝑖 (𝑡 =  0)  =  𝑁0 is the number density of species i at time 𝑡 =  0; constant 𝑐i > 0, 

known as standard kinetic equation. 

The solution of the equation (2) is given by 

𝑁𝑖(𝑡)  = 𝑁0 𝑒−𝑐𝑖𝑡                                                                 (3) 
An alternative form of the same equation can be obtained on integration: 

𝑁(𝑡)  − 𝑁0  =  𝑐 𝐷0
0

𝑡
−1 𝑁(𝑡)                                                                       (4) 

where 𝐷0
0

𝑡
−1 is the standard integral operator. Haubold and Mathai [7] have given the fractional generalization of the 

standard kinetic equation (2) as 

𝑁(𝑡)– 𝑁0  =  𝑐𝑣 𝐷0
0

𝑡
−𝑣 𝑁(𝑡)                                                                      (5) 

where 𝐷0
0

𝑡
−𝑣 is the well known Riemann-Liouville fractional integral operator (Oldham and Spanier 16]; Samko et 

al. [19]; Miller and Ross [13]) defined by 

𝐷0
0

𝑡
−𝑣𝑁(𝑡) =

1

𝛤(𝜈)
∫(𝑡 −  𝑢)𝑣−1𝑓(𝑢),     𝑅(𝑣) > 0,                                          (6)

𝑡

0

 

 
The solution of the fractional kinetic equation (6) is given by (see Haubold and Mathai [7] ) 

𝑁(𝑡) = 𝑁0 ∑
(−1)

𝑣𝑘

Γ(𝑣𝑘 + 1)
(𝑐𝑡)

𝑣𝑘
∞

𝑘=0

                                                                   (7) 

Further Saxena, Mathai and Haubold [20] studied the generalizations of the fractional kinetic equation in terms of 

the Mittag-Leffler functions which extended the work of Haubold and Mathai [7]. In an another paper Saxena, 

Mathai and Haubold [21] developed the solutions for fractional kinetic equations associated with the generalized 

Mittag-Leffler function and R-function.  

In the present paper we introduce and investigate the further computable extensions of the generalized fractional 

kinetic equation. The fractional kinetic equation and its solution, discussed in terms of the generalized Miller-Ross, 

are written in compact and easily computable form. 

 

2. The New generalized Miller-Ross function:  
This function introduced by the authors is defined as follows: 

𝑁𝑝,𝑞
𝛼,𝛽,𝑎

 (𝑎1  .  .  .  . 𝑎𝑝; , 𝑏1 .  .  .  . 𝑏𝑞; 𝑥0) = ∑
(𝑎1)𝑛𝑘   .  .  .  .  . (𝑎𝑝)

𝑛𝑘 

(𝑏1)𝑛𝑘  .  .   .  .  . (𝑏𝑞)
𝑛𝑘

∞

𝑛=𝑜

𝑎𝑛𝑥𝑛+𝛽

Γ(𝛼𝑛 + 𝛽 + 1)
                              (8) 

 

Here, 𝑝  upper parameters 𝑎1,𝑎2,   .  .  .  .  .  .   𝑎𝑝 and 𝑞  lower parameters   𝑏1,   𝑏2,   .  .  .  .  .𝑏𝑞 , 𝛼, 𝛽𝜖𝐶 , 𝑅(𝛼) > 0 ,              

𝑅(𝛽) > 0 and (𝑎𝑗)𝑛𝑘  (𝑏𝑗)𝑛𝑘  are pochammer symbols. The function (3) is defined when none of the denominator 

parameters  𝑏𝑗𝑠, 𝑗 = 1,2, … … … 𝑞 is a negative integer or zero. If any parameter 𝑎𝑗 is negative then the function (3) 

terminates into a polynomial in x. By using ratio test, it is evident that function (3) is convergent for all x, when 𝑞 ≥
𝑝, it is convergent for |𝑥| < 1 when 𝑝 = 𝑞 + 1, divergent when 𝑝 > 𝑞 + 1. In some cases the series is convergent 

for  𝑥 = 1, 𝑥 = −1. Let us consider take, 

                        

𝛽 = ∑ 𝑎𝑗

𝑝

𝑗=1

− ∑ 𝑏𝑗

𝑞

𝑗=1

 

when  𝑝 = 𝑞 + 1 , the series is absolutely convergent for |𝑥| = 1  if 𝑅(𝛽) < 0 , convergent for 𝑥 = −1,  if           

0 ≤ 𝑅(𝛽) < 1 and divergent for |𝑥| = 1, if 1≤ 𝑅(𝛽). 
 

3. Generalized Fractional Kinetic Equations: 
'In this section we investigate the solution of generalized fractional kinetic equation'. The results are obtained in a 

compact form in terms of New Generalized Miller-Ross function and are suitable for computation. The result is 

presented in the form of a theorem as follows: 

 

Theorem 1: 

  If 𝜈 >  0, 𝑐 >  0, 𝜇 >  0,  then for the solution of the generalized fractional kinetic equation 
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𝑁(𝑡)– 𝑁0𝑡−𝜇(𝑣−1)𝑁𝑝,𝑞
𝑣,𝜇,𝑎

 (𝑎1  .  .  .  . 𝑎𝑝; , 𝑏1 .  .  .  . 𝑏𝑞; 𝑡𝑣0)  =  −𝑐𝑣 𝐷0
0

𝑡
−𝑣 𝑁(𝑡)                                       (9) 

 

there holds the formula 

𝑁(𝑡) =  𝑁0𝑡−𝜇(𝑣−1) ∑(−1)𝑘(𝑐𝑡)𝑘𝑣

∞

𝑘=0

𝑁0 𝑝,𝑞
2𝑣,𝜇,𝑎

 (𝑎1  .  .  .  . 𝑎𝑝; , 𝑏1 .  .  .  . 𝑏𝑞; 𝑡𝑣0)                              (10) 

Proof.  Applying the Laplace transform both the sides of equation (9), we get 

𝐿{𝑁(𝑡)}– 𝐿 {𝑁0𝑡−𝜇(𝑣−1)𝑁𝑝,𝑞
𝑣,𝜇,𝑎

 (𝑎1  .  .  .  . 𝑎𝑝; , 𝑏1 .  .  .  . 𝑏𝑞 ; 𝑡𝑣0)} = 𝐿{ −𝑐𝑣 𝐷0
0

𝑡
−𝑣 𝑁(𝑡)} 

𝑁(𝑠) − 𝑁0 ∑
(𝑎1)𝑛𝑘   .  .  .  .  . (𝑎𝑝)

𝑛𝑘 
𝑎𝑘

(𝑏1)𝑛𝑘  .  .   .  .  . (𝑏𝑞)
𝑛𝑘

1

𝑠𝑣𝑘+𝜇+1
= −𝑐𝑣𝑠−𝑣𝑁(𝑠)                                                               (11)

∞

𝑘=𝑜

 

Solving for 𝑁(𝑠), it gives 

𝑁(𝑠) =
𝑁0

(1 + 𝑐𝑣𝑠−𝑣)
∑

(𝑎1)𝑘   .  .  .  .  . (𝑎𝑝)
𝑘 

𝑎𝑘

(𝑏1)𝑘  .  .   .  .  . (𝑏𝑞)
𝑘

1

𝑠𝑣𝑘+𝜇+1
                                                               (12)

∞

𝑘=𝑜

 

Now, taking inverse Laplace transform both the sides of (12), we get 

𝐿−1{𝑁(𝑠)} = 𝐿−1 {𝑁0 ∑
(−1)𝑘(𝑐𝑣𝑠−𝑣)𝑘(1)𝑘

k!
 

∞

𝑘=𝑜

∑
(𝑎1)𝑛𝑘   .  .  .  .  . (𝑎𝑝)

𝑛𝑘 
𝑎𝑘

(𝑏1)𝑛𝑘  .  .   .  .  . (𝑏𝑞)
𝑛𝑘

1

𝑠𝑣𝑘+𝜇+1

∞

𝑘=𝑜

}                                (13) 

Or 

𝑁(𝑡) =  𝑁0𝑡−𝜇(𝑣−1) ∑(−1)𝑘(𝑐𝑡)𝑘𝑣

∞

𝑘=0

𝑁𝑝,𝑞
2𝑣,𝜇,𝑎

 (𝑎1  .  .  .  . 𝑎𝑝; , 𝑏1 .  .  .  . 𝑏𝑞; 𝑡𝑣0)                                        (14) 

 

This is complete proof of the statement (9). 

 

4. Special Cases: 
When 𝑎 = 1, 𝜇 = 0, then 

Corollary: 1. If 𝜈 >  0, 𝑐 >  0, 𝜇 >  0,  then for the solution of the generalized fractional kinetic equation (in 

form of M-Series [22, 23])  

 

𝑁(𝑡)– 𝑁0𝑀𝑝,𝑞
𝑣  (𝑎1  .  .  .  . 𝑎𝑝; , 𝑏1 .  .  .  . 𝑏𝑞; 𝑡𝑣0)  =  −𝑐𝑣 𝐷0

0
𝑡
−𝑣 𝑁(𝑡)                                       (15) 

 

there holds the formula 

𝑁(𝑡) =  𝑁0 ∑(−1)𝑘(𝑐𝑡)𝑘𝑣

∞

𝑘=0

𝑀𝑝,𝑞
2𝑣  (𝑎1  .  .  .  . 𝑎𝑝; , 𝑏1 .  .  .  . 𝑏𝑞; 𝑡𝑣0)                              (16) 

 

When  𝜇 = 0, 𝑎 = 1 and no upper and lower parameter then 

Corollary: 2. If 𝜈 >  0, 𝑐 >  0, 𝜇 >  0,  then for the solution of the generalized fractional kinetic equation (in 

form of Mittag-Leffler function [10]) 

𝑁(𝑡)– 𝑁0𝐸𝜈(𝑡𝑣)  =  −𝑐𝑣 𝐷0
0

𝑡
−𝑣 𝑁(𝑡)                                       (17) 

 

there the relation 

𝑁(𝑡) =  𝑁0 ∑(−1)𝑘(𝑐𝑡)𝑘𝑣

∞

𝑘=0

 𝐸𝜈(𝑡𝑣)                            (18) 

When  𝑣 = 1 and no upper and lower parameter then 

Corollary: 3. If 𝜈 >  0, 𝑐 >  0, 𝜇 >  0,  then for the solution of the generalized fractional kinetic equation (in 

form of Miller-Ross function [27]) 

𝑁(𝑡)– 𝑁0𝐸𝑡(𝜇, 𝑎)  =  −𝑐1 𝐷0
0

𝑡
−1 𝑁(𝑡)                                                        (19) 

 

there exist the result 
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𝑁(𝑡) =  𝑁0 ∑(−1)𝑘(𝑐𝑡)𝑘

∞

𝑘=0

𝐸𝑡(𝜇, 𝑎)                                                  (20) 

 

 

4. Conclusion: 
In this paper we have introduced an extended fractional generalization of the standard kinetic equation and 

established solution for the same. Fractional kinetic equation can be used to compute the particle reaction rate and 

describes the statistical mechanics associated with the particle distribution function. The generalized fractional 

kinetic equation discussed in this article, involving New Generalized Miller-Ross function contains a number of 

known (may be new also) fractional kinetic equations involving various other special functions (the M-series, 

Mittag-Leffler function etc.).  
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